sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей Политикой Конфиденциальности
Согласен
Поиск:

Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
TS_pub
technospheramag
technospheramag
ТЕХНОСФЕРА_РИЦ
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта

Яндекс.Метрика
R&W
 
 
Вход:

Ваш e-mail:
Пароль:
 
Регистрация
Забыли пароль?
Книги по нанотехнологиям
Под редакцией д.т.н., профессора Мальцева П.П.
Другие серии книг:
Мир материалов и технологий
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир фотоники
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "аддитивные технологии"
Фотоника #5/2024
А. Ю. Ковчик, А. М. Вильданов, Н. Р. Алымов, С. Ю. Иванов, Р. В. Мендагалиев
Применение методики компенсации остаточных деформаций при прямом лазерном выращивании крупногабаритных изделий
DOI: 10.22184/1993-7296.FRos.2024.18.5.406.418 Прямое лазерное выращивание находит широкое применение в наукоемких отраслях промышленности благодаря возможности создания сложнопрофильных изделий, изготовление которых невозможно традиционными методами производства. Однако производственный процесс осложнен формированием остаточных напряжений и деформаций в изделии негативно влияющих на его качество. Поле распределения напряжений и деформаций в изделии связано с его геометрией. В данной статье представлены основные способы решения данной проблемы, описаны типовые для ПЛВ виды деформаций и методы их компенсации. Представлены результаты компенсации деформаций на примере четырех изделий различной формы, из нержавеющей стали марки 12Х18Н10Т и жаропрочного сплава ВЖ159.
Станкоинструмент #3/2023
А. А. Аввакумов
Аддитивные технологии в CAD / CAM / CAPP ADEM-VX
DOI: 10.22184/2499-9407.2023.32.3.66.67 Представлен программный комплекс ADEM версии VX, поддерживающий проектирование технологических процессов в сфере аддитивных технологий, который позволяет одновременно выполнять программирование установок для выращивания (САМ-модуль) и технологическое проектирование (модуль САРР) для включения операций аддитивной обработки в общую информационную систему предприятия.
Станкоинструмент #2/2023
М. Ю. Куликов, А. Ю. Попов, Е. О. Шевчук, А. А. Крапостин
Финишная абразивная обработка деталей из полимерно-­композитных материалов
DOI: 10.22184/2499-9407.2023.31.2.82.86 Разработана технология финишной абразивной обработки деталей из полимерно-­композитных материалов (ПКМ), обеспечивающая шероховатость поверхности (Ra ≤ 0,63) и предотвращающая влагопоглощение и набухание обработанной поверхности. Определён эффективный способ подачи водо-воздушной смеси в зону резания с помощью внутренних каналов инструмента.
Станкоинструмент #1/2023
П. А. Петров, И. А. Бурлаков, П. А. Полшков, М. А. Чибизов, Б. Ю. Сапрыкин
Повышение прочности формообразующего инструмента из полилактида PLA методом закалки
DOI: 10.22184/2499-9407.2023.30.1.58.65 Приведены результаты исследований комплекса свой­ств термопластичного полимера – полилактида (PLA), на основании которых выбран режим 3D-печати формообразующего инструмента, применяемого для пространственной гибки стальных труб малого диаметра. Определен оптимальный режим закалки, обеспечивающий лучший комплекс механических свой­ств инструмента.
Фотоника #6/2022
Е. В. Земляков, Н. Р. Алымов, А. М. Вильданов, К. Д. Бабкин, С. Ю. Иванов, Н. Г. Кислов, Д. С. Тарасов, А. С. Мятлев, А. А. Ивановский
Опыт применения лазерных и аддитивных технологий для изготовления элементов современных промышленных газотурбинных установок
DOI: 10.22184/1993-7296.FRos.2022.16.6.436.452 Для обеспечения конкурентоспособности высокотехнологичных производств требуется внедрение новых технологий обработки материалов. На примере изготовления газосборника камеры сгорания газотурбинной установки ГТЭ‑65.1 показаны технологические возможности современных лазерных и аддитивных технологий. Описаны основные стадии подготовки к изготовлению высокоточных заготовок методом прямого лазерного выращивания из жаропрочного никелевого сплава и нержавеющей стали и их последующей обработки. Приведены результаты металлографических исследований, механических испытаний и контроля геометрии, подтверждающие высокий уровень качества получаемых изделий. Продемонстрирована возможность комбинации аддитивных технологий, технологий лазерной сварки и резки и технологий термической, механической и электроэрозионной обработки при изготовлении технически сложных узлов и деталей.
Фотоника #5/2022
Д. С. Трубашевский
Eppur si muove, или забудьте все, что вы знали о классической 3d-печати
DOI: 10.22184/1993-7296.FRos.2022.16.5.358.368 Главная цель аддитивного производства (АП) – ​это значительное повышение производительности серийного производства. Динамичное развитие аддитивных технологий (АТ) связано с перспективами их автоматизации при внедрении в конструкции станков модульных компоновочных решений. Рассмотрены схемы, в которых рабочий стол представляет собой важный элемент для автоматизации производства и увеличения производительности всего технологического комплекса. Использование круглого стола с полярными координатами может повлиять на производительность АП. Рассмотрены разные АТ, в том числе MJM, STEP, MoldJet, HSR, для демонстрации использования таких столов.
Электроника НТБ #7/2022
А. Горелов
ИССЛЕДОВАНИЕ ЧЕРНИЛ ДЛЯ 3D-ПЕЧАТИ ЭЛЕКТРОНИКИ: ВЫБОР ТЕХНОЛОГИЙ
DOI: 10.22184/1992-4178.2022.218.7.146.151 Описан начальный этап исследований по созданию прототипа отечественной технологии 3D-печати печатных плат, ведущихся в МАИ по госзаданию от Министерства науки и высшего образования РФ. За основу взята технология струйной печати PolyJet, задачей начального этапа является разработка методики получения проводящих чернил из производимых в России исходных материалов.
Станкоинструмент #1/2022
Л. Ю. Дарьина
Развитие направления «Аддитивные технологии» в системе довузовской подготовки. Опыт использования CAD / CAM / CAPP ADEM
Предложена методика использования интегрированной системы CAD / CAM / CAPP ADEM 9.0 в качестве универсального инструмента решения задачи развития политехнического образования в сфере общего и дополнительного образования.
Станкоинструмент #1/2022
Д. К. Рябов, И. А. Грушин, А. Г. Сеферян
Некоторые особенности формирования структуры и свойств новых алюминиевых сплавов при аддитивном производстве
DOI: 10.22184/2499-9407.2022.26.1.44.50 Представлены результаты исследований ряда алюминиевых сплавов различных систем легирования, получаемых по технологии СЛС, и проведен их сравнительный анализ с традиционными литейными и деформируемыми алюминиевыми сплавами.
Фотоника #7/2021
М. В. Рашковец, Н. Г. Кислов, А. А. Никулина, О. Г. Климова-Корсмик
Влияние термической обработки на структурно-фазовое состояние и ударную вязкость никелевого сплава Inconel 718 при аддитивном производстве
DOI: 10.22184/1993-7296.FRos.2021.15.7.568.575 Проведен анализ фазового состава жаропрочного никелевого сплава Inconel 718, сформированного аддитивной технологией прямого лазерного выращивания с применением волоконного лазера ЛС‑3. Методами структурных исследований установлено, что основной упрочняющей фазой сплава после термической обработки является γ’-фаза. Выделение δ-фазы происходит в области частиц фазы Лавеса. Усталостные испытания показывают повышение ударной вязкости в 1,5 раза при смене направления выращивания с продольной ориентации на поперечную относительно динамического воздействия на материал в исходном и термически обработанном состоянии. Распространение трещины в исходном состоянии сопровождается разрушением частиц фазы Лавеса и обходом в термически обработанном материале.
1
2 3 4 5
Разработка: студия Green Art