Электроника НТБ #5/2024
М. Белкин, М. Васильев, Д. Клюшник, Е. Кузнецов
СОЗДАНИЕ РАДИОФОТОННОЙ АППАРАТУРЫ НА БАЗЕ ТЕХНОЛОГИЙ ОПТИЧЕСКОЙ И СВЕРХВЫСОКОЧАСТОТНОЙ ЭЛЕКТРОНИКИ
DOI: 10.22184/1992-4178.2024.236.5.106.120 Рассматриваются общий принцип построения радиофотонной аппаратуры на базе оптоэлектронных и сверхвысокочастотных электронных узлов и электронная и фотонная компонентные базы, применяемые в радиофотонной аппаратуре.
Электроника НТБ #4/2024
С. Сковородников, Д. Семенов
РАЗРАБОТКА И МОДЕЛИРОВАНИЕ СВЧ-ФИЛЬТРА С КОНТАКТАМИ ТИПА FLIP-CHIP
DOI: 10.22184/1992-4178.2024.235.4.72.74 В статье представлены результаты моделирования СВЧ полосно-пропускающего фильтра с использованием отечественной САПР «Гамма» и сравнение их с параметрами, измеренными на серийных образцах. Исследована возможность оценки диэлектрической проницаемости материалов, применяемых для изготовления СВЧ-фильтров.
Электроника НТБ #10/2023
С. Назаров, А. Барсуков
НАДЕЖНОСТЬ И БЕЗОПАСНОСТЬ ОПЕРАЦИОННЫХ СИСТЕМ РАЗЛИЧНОЙ АРХИТЕКТУРЫ. ЧАСТЬ 3
DOI: 10.22184/1992-4178.2023.231.10.80.86 Рассматривается модель операционной системы Касперского. Отмечается, что кибериммунный принцип ее построения повышает надежность и безопасность операционных систем KasperskyOS по сравнению с системами другой архитектуры.
Электроника НТБ #3/2022
А. Строгонов, Ю. Худяков, М. Белых
РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ 8 РАЗРЯДНОГО АЦП ПОСЛЕДОВАТЕЛЬНОГО ПРИБЛИЖЕНИЯ В САПР OrCAD C ИСПОЛЬЗОВАНИЕМ МАКРОМОДЕЛЕЙ
DOI: 10.22184/1992-4178.2022.214.3.90.94 Моделирование электрических схем с применением современных САПР позволяет исследовать работу схемы без необходимости изготовления прототипа. В статье рассмотрен пример реализации функциональной схемы АЦП последовательного приближения в САПР OrCAD с использованием макромоделей ИС.
Электроника НТБ #4/2021
А. Рычков
ТЕСТИРОВАНИЕ ПРОЕКТОВ ИНТЕГРАЛЬНЫХ СХЕМ НА СБОЕУСТОЙЧИВОСТЬ С ПОМОЩЬЮ ИНСТРУМЕНТА Z01X ОТ SYNOPSYS
DOI: 10.22184/1992-4178.2021.205.4.66.69 Описывается механизм возникновения сбоев функционирования ИС при воздействии тяжелых заряженных частиц, приводятся некоторые методы снижения влияния данных воздействий и рассматриваются принципы работы и преимущества инструмента Z01X от компании Synopsys для тестирования проектов ИС на сбоеустойчивость.
Электроника НТБ #2/2021
А. Воронин
МОДЕЛИРОВАНИЕ СИГНАЛОВ ГОЛОВНОЙ ЧАСТИ СЧИТЫВАЮЩЕЙ ЭЛЕКТРОНИКИ КРЕМНИЕВЫХ ДЕТЕКТОРОВ
DOI: 10.22184/1992-4178.2021.203.2.150.155 Комплексный подход к моделированию головной части считывающей электроники кремниевых детекторов позволяет изучить форму сигналов и оценить влияние помех из соседних каналов. В статье описана методика моделирования сигналов системы «кремниевый детектор – зарядочувствительный усилитель (ЗЧУ) – шейпер», проведен анализ полученных результатов, выполнена оценка точности используемых моделей.
Электроника НТБ #8/2019
А. Петровичев
Анализ электромагнитной обстановки с использованием программных средств
DOI: 10.22184/1992-4178.2019.189.8.122.124 Для того чтобы на этапе проектирования спрогнозировать электромагнитную обстановку и выявить проблемы, применяют компьютерное моделирование. При выборе программных средств для моделирования разработчику следует учитывать ряд факторов, в частности функциональные возможности программы, точность расчета, требуемые вычислительные ресурсы.
Электроника НТБ #6/2019
А. Глинкин, К. Никеев, Б. Филипов
Решения Mentor, a Siemens Business. Часть 2
DOI: 10.22184/1992-4178.2019.187.6.140.148 В статье приводятся краткие сведения обо всех инструментах, выпускаемых компанией Mentor Graphics. Во второй части материала представлены средства проектирования и анализа печатных плат. DOI: 10.22184/1992-4178.2019.187.6.140.148
Электроника НТБ #5/2019
Д. Лобзов, А. Лохов
Решения Mentor, a Siemens Business для проектирования ИС и печатных плат
Часть 1 В статье приведены краткие сведения обо всех средствах проектирования ИС и печатных плат, выпускаемых компанией Mentor Graphics. В первой части представлены инструменты проектирования, моделирования и верификации цифровых, аналоговых и аналого-цифровых ИС.
Наноиндустрия #9/2018
Аваков Сергей Мирзоевич, Плебанович Владимир Иванович
Безмасковая литография
Наряду с массовым производством все чаще возникает потребность в индивидуальном подходе при производстве интегральных микросхем (ИМС). Десятилетиями складывающаяся технология производства ИМС не подразумевает индивидуального производства. Наличие фотошаблона (маски) подразумевает многократное повторение одного и того же изделия. Появление многолучевых сканирующих генераторов изображений позволило серьезно подойти к освоению технологии безмасочной литографии. УДК 621.38, ВАК 05.27.06 DOI: 10.22184/1993-8578.2018.82.200.202